Ньютон ввёл в свои уравнения и силу гравитации, но только в 1860-х гг. шотландский физик Джеймс Клерк Максвелл включил в классическую физику силы электричества и магнетизма. Для этого Максвеллу потребовались дополнительные уравнения и более изощрённая математика. Но его новые уравнения столь же успешно описывали явления электричества и магнетизма, как уравнения Ньютона описывали движение. В конце XIX в. стало казаться, что никакие секреты Вселенной не могут устоять перед мощью человеческого интеллекта.

Действительно, после успешного включения в классические уравнения сил электричества и магнетизма всё больше росло ощущение, что изучение теоретической физики вскоре будет завершено. Некоторые считали, что физика быстро становится законченной наукой, и её законы будут вскоре высечены в камне. В 1894 г. известный физик-экспериментатор Альберт Майкельсон отметил, что «большинство основополагающих принципов прочно установлены», и сослался на «именитого учёного» (большинство полагают, что это был английский физик лорд Кельвин), сказавшего, что всё, что остаётся — это определить некоторые числа с бо́льшим числом знаков после запятой.{1} В 1900 г. Кельвин сам заявил, что горизонт омрачают лишь «два облачка», одно из которых относится к свойствам движения света, а другое — к аспектам излучения нагретых тел,{2} но в целом это всего лишь детали, которые, несомненно, вскоре будут прояснены.

За следующее десятилетие всё изменилось. Как и ожидалось, две проблемы, поставленные лордом Кельвином, были вскоре разрешены, но они оказались далеко не малозначащими. Каждая из них вызвала целую революцию, и каждая требовала фундаментально переписать законы природы. Были низвержены классические концепции пространства, времени и реальности — те самые, которые сотни лет не только исправно работали, но и лаконично выражали наше интуитивное ощущение мира.

Релятивисткая революция, рассеивающая первое из «облачков» Кельвина, произошла в 1905 и 1915 гг., когда Альберт Эйнштейн закончил создание своей специальной и общей теорий относительности (глава 3). Разгадывая загадки, связанные с электричеством, магнетизмом и движением света, Эйнштейн понял, что ньютоновская концепция пространства и времени, краеугольный камень классической физики, содержит изъяны. В течение нескольких напряжённых недель весной 1905 г. он установил, что пространство и время не абсолютны, как думал Ньютон, а сплетены друг с другом и относительны, что бросает вызов обычному опыту. Десять лет спустя Эйнштейн вбил последний гвоздь в крышку гроба ньютоновских представлений, переписав законы гравитации. На этот раз он не только показал, что пространство и время являются частями единого целого, но и показал, что за счёт своего искажения и искривления они участвуют в космической эволюции. Вместо того чтобы быть жёсткими и неизменными структурами, как представлял себе Ньютон, пространство и время в переработке Эйнштейна оказались гибкими и динамичными.

Две теории относительности относятся к самым ценным из достижений человечества, и этими теориями Эйнштейн опрокинул ньютоновское представление о реальности. Несмотря на то что ньютоновская физика математически охватывает многое из переживаемого нами на физическом уровне, описываемая ей реальность оказалась расходящейся с реальностью нашего мира. Наша реальность — релятивистская. Однако благодаря тому, что расхождение между классической и релятивистской реальностью проявляется только в экстремальных условиях (условиях экстремальных скоростей и гравитации), ньютоновская физика даёт очень точное приближение, полезное во многих ситуациях. Но «полезность» и «реальность» — совсем разные категории. Как мы увидим дальше, свойства пространства и времени, с которыми большинство из нас сроднилось, отражают, как оказалось, неверное ньютоновское представление.

Квантовая реальность

Вторая аномалия, упомянутая лордом Кельвиным, привела к квантовой революции — одному из величайших переворотов, который когда-либо происходил в человеческом понимании. Когда улеглось пламя и рассеялся дым, на фасаде здания классической физики остались выжженными знаки квантовой реальности.

Основное утверждение классической физики состоит в том, что если знать положение и скорость всех объектов в заданный момент времени, то с помощью уравнений Ньютона вместе с уравнениями Максвелла можно определить их положение и скорость в любой момент времени, в прошлом или будущем. Классическая физика прямо заявляет, что прошлое и будущее запечатлены в настоящем. И с этим согласны также общая и специальная теории относительности. Хотя релятивистские понятия прошлого и будущего являются более изощрёнными, чем их классические аналоги (главы 3 и 5), уравнения обеих релятивистских теорий столь же полно описывают прошлое и будущее на основании данных о настоящем.

Однако в 1930-х гг. физики были вынуждены разработать совершенно новую концептуальную схему, названную квантовой механикой. Совершенно неожиданно они пришли к тому, что только квантовые законы могут решить множество загадок и объяснить множество новых данных, касающихся атомной и субатомной областей. Однако квантовые законы гласят, что даже если провести самые точные измерения, то самое лучшее, на что можно надеяться, — это предсказать вероятность того или иного события в будущем или прошлом. Согласно квантовой механике Вселенная не запечатлена в настоящем, а участвует в некоей игре случая.

И хотя нет единого мнения, как именно следует интерпретировать уравнения квантовой механики, однако большинство физиков солидарны в том, что вероятность глубоко вплетена в ткань квантовой реальности. В то время как человеческая интуиция и её отражение в классической физике рисуют перед собой реальность, в которой всё происходящее идёт определённо тем или иным образом, то квантовая механика описывает реальность, в которой события подвешены в состоянии неопределённости и могут идти частично тем и частично иным образом. События становятся определёнными, только когда подходящее наблюдение вынуждает их покинуть квантовую неопределённость и остановиться на каком-либо выборе. Однако реализующийся исход не может быть предсказан — мы можем предсказать лишь вероятность того, что события пойдут тем или иным образом.