Несостоятельной оказалась и другая гипотеза — предположение, что звезда разогревается за счет непрерывного падения на нее метеоритов. Наконец, только к середине текущего века нашлось как будто правильное решение — энергия звезд поддерживается теми ядерными реакциями, которые совершаются в их недрах. Трудно наглядно представить себе эти недра, где давление газа достигает миллиарда мегапаскалей, а температура — миллиона градусов. Теоретики-астрофизики строят модель звезды и происходящих внутри нее ядерных реакций, а затем сравнивают эту умозрительную схему с наблюдениями. Кто-то из них однажды сказал, что самое простое на свете — это звезда. И на самом деле, даже любое мельчайшее знакомое нам живое существо несравнимо сложнее звезды. Речь идет не только о сложных высокомолекулярных соединениях, составляющих тело всех организмов, но и о тех процессах, которые поддерживают в них жизнь.

А звезда на самом деле устроена очень просто. Это водородно-гелиевый газовый шар, в каждой точке которого тяготение к центру уравновешивается силой давления газа. Для обычных широко распространенных звезд температура их центральных областей заключена в пределах от 10 до 20 млн. градусов. Так как на поверхности звезд температура значительно ниже, чем в их центре, в любой звезде совершается постоянный перенос энергии изнутри наружу. Механизмом этого переноса может служить как лучеиспускание, так и конвекция. Достигнув поверхности, внутренняя энергия звезды излучается в пространство.

Устойчивость любой звезды объясняется противоборством двух главных сил — тяготения и давления газа. Первая заставляет звезду сжиматься, но упругость газа, или, как говорят, его давление, этому препятствует. Равновесие двух сил в каждой точке звезды и обеспечивает ее стабильность как космического тела. При некоторых допущениях можно рассчитать, как распределяются плотность, давление и температура вдоль каждого радиуса звезды, т. е., иначе говоря, построить модель звезды, дающую представление о ее общем строении. В современных моделях звезд учитываются не только гравитация и упругость газа, но и потоки электромагнитной энергии, излучаемой звездой. Эта энергия также должна участвовать в создании равновесия внутри звезды, а потому расчеты звездных моделей — дело весьма трудоемкое, требующее привлечения быстродействующих электронно-вычислительных машин.

Рассмотрим теоретические модели некоторых типов звезд. Красные гиганты (рис. 1,а) имеют небольшое гелиевое ядро, в котором температура практически постоянна (изотермическое ядро). Это ядро окружено узкой зоной, в которой выделяется энергия за счет термоядерных реакций. Далее следует зона, где энергия переносится лучеиспусканием. В остальной же части звезды энергия передается конвекцией, т. е. за счет перемешивания вещества. У звезд разных участков так называемой главной последовательности ядра сильно различаются. У бело-голубых звезд (рис. 1,в) сравнительно небольшое конвективное ядро окружено зоной «лучистого» переноса энергии.

Рис. 1. Модели некоторых типов звезд.

а — красный гигант; б — Солнце; части главной последовательности; в — верхняя (бело-голубце звезды), г — нижняя (красные карлики); д — белый карлик; / — изотермическое гелиевое ядро; 2 — энерговыделяющий слой; 3—зона переноса энергии излучением; 4 — конвективная зона (ядро); 5 — вырожденный электронный газ; 6 — идеальный газ


В нижней части той же последовательности, т. е. у красных карликов (рис. 1,г), роль этих зон, как видит читатель, меняется. У звезд типа Солнца (рис. 1, 6) толщина конвективной зоны составляет примерно одну седьмую радиуса звезды.

Несколько особняком стоят белые карлики (рис. 1,д). В основном они состоят из так называемого «вырожденного газа» — смеси свободных электронов, протонов и альфа-частиц. В этом газе главную роль играют электроны — ими определяется давление вырожденного газа, температура которого близка к 10 млн. градусов. Снаружи белый карлик окружен оболочкой из обычного идеального газа.[1]

Какие же процессы совершаются в недрах звезд? Общего ответа на этот вопрос пока нет. У разных звезд различны и термоядерные реакции.

Большинство современных астрономов считают, что в недрах Солнца при температуре около 14 млн. градусов водород «перегорает» в гелий за счет так называемого протон-протонного цикла ядерных реакций. Этот цикл состоит из трех этапов.

Этап первый. Водород 11Н превращается в дейтерий D (изотоп водорода с атомной массой 2) с выделением позитронов β+ и нейтрино ν. Схематически это можно записать как 11Н + 11Н → D + β + ν.

Напомним читателю, что позитрон — это частица, по массе равная электрону, но имеющая положительный заряд, а нейтрино — электрически нейтральная частица исчезающе малой массы.

Этап второй. Дейтерий при взаимодействии с водородом превращается в изотоп гелия с атомной массой 3 (3Не). Этот процесс сопровождается гамма-излучением (γ) — электромагнитным излучением с очень малой длиной волны: D + 11H → 3Не + γ.

Этап третий. Два атома изотопа гелиия превращаются в нормальный атом гелия 4Не и два атома водорода: 23Не → 4Не + 21Н.

Таким образом, в ходе протон-протонного цикла ядерных реакций водород превращается в гелий. При синтезе ядер гелия часть вещества (за счет так называемого «эффекта упаковки») превращается в излучение. Количество выделяемой при этом энергии можно вычислить по формуле Энштейна: Е = mс2, где Е — количество выделенной энергии; m — масса вещества, превратившегося в излучение; с — скорость света (300 000 км/с).