Заметим, что частота, определенная для каждого из этих каналов, на самом деле является центральной частотой канала шириной 22 МГц. Поэтому каждый канал перекрывает несколько других, расположенных выше и ниже его. Полный диапазон 2,4 ГГц имеет пространство только для трех непересекающихся каналов, поэтому, если ваша сеть работает, скажем, на четвертом канале, а сосед использует пятый или шестой, каждая сеть будет детектировать сигналы из другой как помехи. Обе сети будут работать, но эффективность (отражающаяся в скорости передачи данных) не будет оптимальной.

Для минимизации помех такого рода попытайтесь скоординировать использование каналов с близлежащими сетевыми администраторами. По возможности каждая сеть должна использовать каналы, которые разделены по меньшей мере полосой 25 МГц или шестью каналами. Если вы пытаетесь устранить помехи между двумя сетями, используйте один канал со старшим номером, а другой — с младшим. В случае трех каналов наилучшим выбором будут № 1, 6 и 11, как показано на рис. 1.4. При работе в более чем трех сетях вам придется смириться с неким количеством помех, но можно свести их к минимуму, назначив новый канал в промежутке между имеющейся парой.



Рис. 1.4.


На практике дело обстоит немного проще. Вы можете оптимизировать эффективность вашей сети, держась подальше от канала, который используется кем-либо еще, но даже если вы и ваш сосед находитесь в смежных каналах, сети могут работать практически нормально. Более вероятно, что вы столкнетесь с проблемами помех от других устройств, использующих диапазон 2,4 ГГц, например беспроводных телефонов и микроволновых печей.

Спецификации 802.11 и различные национальные органы государственного регулирования (например, Федеральная комиссия связи в Соединенных Штатах) также устанавливают ограничения на значение мощности передатчика и коэффициента усиления антенны, которые может использовать беспроводное устройство Ethernet. Оно предназначено для ограничения расстояния, на которое может вестись связь, и, следовательно, позволяет большему количеству сетей работать в одних и тех же каналах без помех. Мы поговорим о методах обхода этих ограничений в мощности и расширении диапазона беспроводной сети без нарушения закона ниже.


Процесс передачи данных


Итак, у нас есть набор радиопередатчиков и приемников, которые работают на одних и тех же частотах и используют один и тот же вид модуляции (модуляцией в связи называется метод добавления некоторой информации, например голоса или цифровых данных, в радиоволну). Следующим этапом является отправка через эту радиоаппаратуру некоторых сетевых данных. Чтобы начать, давайте обозначим общую структуру компьютерных данных и методы, которые используются в сети для их передачи из одного места в другое. Это общеизвестная информация, но ее изложение займет у меня всего пару страниц. Тогда вам легче будет понять, как работает беспроводная сеть.


Биты и байты


Как известно, обрабатывающее устройство компьютера может распознавать только два информационных состояния: либо сигнал присутствует на входе устройства, либо его там нет. Эти два условия также обозначаются как 1 и 0, или «включено» и «выключено», или знак и пробел. Каждый пример 1 или 0 называется битом.

Отдельные биты не являются особо полезными, но, когда вы соединяете восемь из них в строку (в байт), можно получить 256 комбинаций. Этого достаточно для присвоения различных последовательностей всем буквам алфавита (как строчным, так и прописным), десяти цифрам от 0 до 9, пробелам между словами и другим символам, например знакам препинания и некоторым буквам, используемым в иностранных алфавитах. Современный компьютер распознает несколько 8-битовых байтов одновременно. По завершении обработки компьютер использует тот же битовый код. Результат может быть выведен на принтер, видеодисплей или канал передачи данных.

Входы и выходы, о которых мы говорим здесь, формируют схему коммуникаций. Аналогично процессору компьютера канал данных может распознавать только один бит в момент времени. Либо сигнал присутствует в линии, либо его нет.

На коротких дистанциях можно отправлять данные по кабелю, который переносит восемь (либо кратное восьми число) сигналов параллельно через отдельные провода. Очевидно, что параллельное подключение может быть в восемь раз быстрее, чем отправка одного бита по отдельному проводу, но эти восемь проводов и стоят в восемь раз дороже одного. Когда вы отправляете данные на длинные дистанции, дополнительная стоимость может стать непомерно высокой. А при использовании имеющихся цепей, например телефонных линий, вы должны найти способ отправки всех восьми битов через один и тот же провод (или иной носитель).

Решением является передача одного бита в момент времени с несколькими дополнительными битами и паузами, определяющими начало каждого нового байта. Такой способ называется последовательным каналом передачи данных, поскольку вы отправляете биты один за другим. Не имеет значения, какую промежуточную среду вы используете для передачи битов. Это могут быть электрические импульсы в проводе, два разных аудиосигнала, последовательности мигающих индикаторов, даже пачка записок, прикрепленных к ногам почтовых голубей. Но у вас должен быть способ преобразования выходных данных компьютера в сигналы, используемые средой передачи, и обратного их преобразования на другом конце.