АКСИОМАТИКА И АКСИОМАТИЧЕСКИЙ МЕТОД


Аксиоматика - система аксиом той или иной математической науки. Например, аксиоматика элементарной геометрии содержит около двух десятков аксиом, аксиоматика числового поля – 9 аксиом. Наряду с ними важнейшую роль в современной математике играет аксиоматика группы, аксиоматика метрического и векторного пространств (см. Вектор) и др. Советским математикам С. Н. Бернштейну и А. Н. Колмогорову принадлежит заслуга аксиоматического описания теории вероятностей (см. Вероятностей теория). Десятки других направлений современной математики также развиваются на аксиоматической основе, т.е. на базе соответствующей системы аксиом (аксиоматики).


Аксиоматический метод – важный научный инструмент познания мира. Большинство направлений современной математики, теоретическая механика и ряд разделов современной физики строятся на основе аксиоматическою метода. В самой математике аксиоматический метод дает законченное, логически стройное построение научной теории. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, находит многократные приложения в математике и естествознании.

Во многих разделах современной математики применяются метрические пространства как совокупности элементов произвольной природы, в которых для каждой пары a и b определено число ρ(a,b), называемое расстоянием между a и b и удовлетворяющее аксиоматике, состоящей всего из трех аксиом:

1) ρ(a,b) = ρ(b,a);

2) ρ(a,b)≥0, причем ρ(a,b) = 0 в том, и только в том случае, если a = b ;

3) ρ(a,b)≤ρ(a,c)+ρ(b,c).


«Аксиомы обладают наивысшей степенью общности и представляют начала всего». Аристотель


В приложениях математики рассматриваются метрические пространства, «точками» которых могут являться линии, фигуры, траектории полета космических кораблей, плановые задания заводов и т.д. Доказав (на основе аксиом) какую-либо теорему о метрических пространствах, можно утверждать, что она будет справедлива для метрических пространств, применяемых в геометрии, алгебре, астронавтике, экономике и, вообще, во всех тех областях, где появляются метрические пространства.

Развив ту или иную аксиоматическую теорию, мы можем, не проводя повторных рассуждений, утверждать, что ее выводы имеют место в каждом случае, когда справедливы рассматриваемые аксиомы. Таким образом, аксиоматический метод позволяет целые аксиоматически развитые теории применять в различных областях знаний. В этом состоит сила аксиоматического метода.

Современная точка зрения на аксиоматическое построение какой-либо области математики заключается в следующем: во-первых, перечисляются первоначальные (неопределяемые) понятия; во-вторых, указывается список аксиом, в которых устанавливаются некоторые связи и взаимоотношения между первоначальными понятиями; в-третьих, с помощью определений вводятся дальнейшие понятия и, в-четвертых, исходя из первоначальных фактов, содержащихся в аксиомах, выводятся, доказываются с помощью некоторой логической системы дальнейшие факты - теоремы. Первоначальные понятия и аксиомы заимствованы из опыта. Поэтому очевидно, что все последующие факты, выводимые в аксиоматической теории, хотя их получают на основе системы аксиом чисто умозрительным, дедуктивным путем, имеют тесную связь с жизнью и могут быть применены в практической деятельности человека.

Важнейшим требованием к системе аксиом является ее непротиворечивость, которую можно понимать так: сколько бы мы ни выводили теорем из этих аксиом, среди них не будет двух теорем, противоречащих друг другу. Противоречивая аксиоматика не может служить основой построения содержательной теории.

Чтобы объяснить подробнее, как в современной математике рассматриваются вопросы непротиворечивости, приведем пример. Несколько школьников решили организовать шахматный турнир по упрощенной схеме: каждый должен сыграть ровно три партии с кем-либо из остальных участников (а белыми или черными фигурами – по жребию). Составить расписание турнира никак не удавалось, и мальчики обратились за помощью к учителю. По просьбе учителя юные шахматисты подсчитали общее число участников:

оно оказалось нечетным. Тогда учитель предложил сформулировать требования, которые ученики предъявили к турниру, в виде аксиом. Для этого потребовалось ввести три первоначальных (неопределяемых) понятия: «игрок», «партия», «участие игрока в партии». Аксиом получилось четыре: