Реклама полностью отключится, после прочтения нескольких страниц!
С первого взгляда кажется, что при таком возрасте Вселенной нельзя проверить опытом и новую оценку времени жизни протона — 1030 лет. Но это не так. Физики преодолели все трудности, наблюдая одновременно за 1031 и даже за большим количеством протонов. Однако пока не удалось надежно зафиксировать ни одного распада протона. Это заставило уточнить расчеты.
Новый результат гласил: время жизни протона составляет 1031 лет. Экспериментаторы увеличили размеры установок. Теперь оценка среднего времени жизни протона — более 1032 лет. Но никто не сомневается в справедливости предсказания Сахарова. Вопрос лишь в том, когда удастся зафиксировать распад протона и какова окажется его истинная долговечность?
Не менее вещим было предсказание, что в первые моменты расширения Вселенной, в адской жаре того времени, нарушалась СРТ-инвариантность, то есть безусловное в наши дни течение времени от прошлого к будущему. Течение, приводящее к тому, что одновременная замена частиц античастицами не может быть замечена, если до такой замены смотреть непосредственно на частицы, а после замены — на их зеркальное отражение.
28 августа 1967 года редакция журнала «Доклады Академии наук» получила еще одну короткую заметку Сахарова «Вакуумные квантовые флуктуации в искривленном пространстве и теория гравитации». В ней он возвратился к исследованию флуктуации вакуума. Теперь его интересует связь флуктуации с природой гравитационного поля.
Эйнштейн многократно говорил и писал, что Общая теория относительности есть, по существу, теория гравитации. Он указывал также, что теория имеет дело с макромиром, с Вселенной, а в микромире она нуждается в уточнении, в учете квантовой природы микромира. Без такого уточнения, писал он, невозможно объяснить длительное существование атомов. Здесь имеется, считал Эйнштейн, глубокое подобие с электродинамикой: без учета квантовых процессов невозможно объяснить, почему атомы не разрушаются вследствие потерь энергии — ее уносят электромагнитные волны, излучаемые атомами. Точно так же атомы должны были бы терять энергию на излучение гравитационных волн, но этому излучению, считал Эйнштейн, препятствуют квантовые эффекты. Устойчивость атомов требует учета квантовых процессов при излучении гравитационных волн.
Сахаров пишет, что в Общую теорию относительности входит некоторая сила, препятствующая искривлению пространства. Эта сила аналогична упругости, которая в обычной механике препятствует, например, искривлению плоской пружины.
Именно упругость становится причиной того, что искривление пространства можно обнаружить только в двух случаях. Во-первых, в непосредственной близости к очень массивным телам (например, вблизи Солнца; даже вблизи таких тел, как Земля, невозможно обнаружить искривление пространства: здесь пространство с большой точностью обладает эвклидовой геометрией и свет распространяется прямолинейно) и, во-вторых, при очень больших расстояниях.
Эйнштейн, по-видимому, не выявил упругости пространства, скрытой в Общей теории относительности и поэтому не рассмотрел причину ее появления.
Сахаров выдвигает неожиданную гипотезу о том, что в основе упругости пространства лежат квантовые флуктуации вакуума. Они возникают вследствие флуктуации полей и постоянного возникновения и исчезновения виртуальных частиц. Такие частицы нельзя наблюдать непосредственно, но их существование бесспорно проявляется в экспериментах, например в сдвиге спектральных линий атомов водорода.
Идея Сахарова состоит в том, что искривление пространства влияет на квантовые флуктуации вакуума, причем так, что флуктуации препятствуют искривлению пространства. Так возникает своеобразная упругость пространства, природа которой ранее была неизвестной.
Важное следствие, полученное Сахаровым в результате математической обработки этой идеи, — возможность вычислить одну из важнейших величин современной физики — постоянную, входящую в закон тяготения Ньютона, которая ранее не поддавалась вычислению и определялась только из опыта.