Реклама полностью отключится, после прочтения нескольких страниц!



Поясним это на примере. Допустим, вы поставили 1 доллар на квадрат № 6. Если на одной из костей выпадает 6, то вы получаете назад ваш доллар да еще 1 доллар впридачу. Если 6 выпадает на двух костях, то вы получаете назад ваш доллар плюс еще 2 доллара. Если же 6 выпадает на всех трех костях, то вы забираете назад ваш доллар и получаете еще 3 доллара.

Игрок может рассуждать так: шанс моего числа выпасть на одной кости составляет 1/6, но поскольку костей три, то он повышается до 3/6, то есть до 1/2; значит, эта игра честная. Разумеется, в интересах владельца аттракциона, чтобы так думал каждый.

У кого в этой игре предпочтительнее шансы – у владельца аттракциона или у игрока, и насколько они велики?

5

С помощью двух прямолинейных разрезов разделите подкову на семь частей так, чтобы в каждой части было по дырке для гвоздя


Эта головоломка ведет свое начало от сказки о золотой подкове. В этой сказке рассказывается о том, как золотую подкову двумя сабельными ударами разрубили на семь частей, в каждой из которых оказалось по дырке для гвоздя, в дырки продели семь ленточек и кусочки подковы повесили на счастье на шеи семерым детям.

После первого разреза получившиеся части разрешается сложить стопкой, а уж затем проводить второй разрез. Но оба разреза должны быть прямыми и бумагу не разрешается ни перегибать, ни даже просто изгибать. Я предложил эту головоломку одному жокею. Он вырезал бумажную подкову, сделав первый разрез, разделил ее на три части, сложил эти части и после второго разреза получил шесть частей. Но задача-то состоит в том, чтобы получить семь частей. Хотя эта головоломка довольно проста, она все же достаточно интересна и, на мой взгляд, заслуживает внимания.

Решив ее, вы можете испытать свои силы в более трудном случае. Какое наибольшее число частей можно получить с помощью двух разрезов? Условия задачи остаются прежними, только теперь вы можете не обращать внимания на дырки для гвоздей.

6

Виноградник Марты

Во времена колонизации Америки один упорный колонист, который взял на себя тяжкий труд по возделыванию каменистой почвы на одном из островов у побережья Новой Англии, попытался с помощью своей маленькой дочери Марты посадить виноградник. Дабы ободрить девочку, лишенный возможности вознаградить ее иным способом, он разрешил ей возделать свой маленький квадратный участок, содержащий ровно 1/16 акра земли.

Рассказывают, что Марта посадила свои виноградные лозы как обычно, рядами, на расстоянии 9 футов друг от друга, и возделывала их так же, как это делали другие. Но, согласно преданию, ее маленькое и довольно рискованное предприятие увенчалось успехом, и виноградник Марты стал известен в округе. Она собирала с акра больше винограда, чем любой виноградарь этого острова, и вырастила много новых и ценных сортов.

Вот и вся история, если ограничиться лишь голыми фактами. Тем не менее, не ставя под сомнение ни таланты Марты, ни миловидность девочки, которая сообщала лишь дополнительный аромат взращенным ею гроздьям, я хотел бы, так сказать, привить одну практическую задачу к ее винограднику, которая могла бы объяснить причину удивительного успеха.

Сколько виноградных лоз можно посадить на квадратном участке в 1/16 акра так, чтобы лозы отстояли друг от друга не менее чем на 9 футов.

Эта задача удачно подобрана, дабы подвергнуть испытанию изобретательность наших математиков, напомним лишь, что у квадрата площадью в 1 акр сторона равна 208 710/1000 фута, а значит, сторона квадрата площадью в 1/16 акра составляет 52 фута 2 дюйма.[2] Это несколько отличается от принятых в сельской местности измерений, где квадрат со стороной в 210 футов полагается равным 1 акру.

А
А
Настройки
Сохранить
Читать книгу онлайн Самые знаменитые головоломки мира - автор Сэм Лойд или скачать бесплатно и без регистрации в формате fb2. Книга написана в 1999 году, в жанре Детская образовательная литература, Математика. Читаемые, полные версии книг, без сокращений - на сайте Knigism.online.