Реклама полностью отключится, после прочтения нескольких страниц!



Далее будем рассматривать только числовые множества — подмножества числовой прямой. Множество всех чисел на этой прямой, т. е. множество действительных чисел, обычно обозначают через R.

Счётные и несчётные множества


Рассмотрим следующую цепочку: NZQR. (Z — это множество целых чисел, a Q — множество рациональных чисел, т. е. множество чисел вида p/q, где р и q — целые, q ≠ 0.) Все эти множества бесконечны. Рассмотрим вопрос об их эквивалентности.

-----------------------

* Коллекционеры почтовых марок.

- 9 -

Установим взаимно однозначное соответствие между Z и N: образуем пары вида (n, 2n) и (—n, 2n+1), n ∈ N, а также пару (0,1) (на первое место в каждой паре ставится число из Z, а на второе — из N).

Есть и другой способ установить это соответствие, например, выписать все целые числа в таблицу, как показано на рисунке, и, обходя её по стрелочкам, присваивать каждому целому числу некоторый номер. Таким образом, мы «пересчитаем» все целые числа: каждому z ∈ Z сопоставляется некоторое натуральное число (номер) и для каждого номера есть такое целое число, которому этот номер приписывается. При этом явную формулу выписывать не обязательно.

Таким образом, Z эквивалентно N.

Всякое множество, эквивалентное множеству натуральных чисел, называется счётным. Такое множество можно «пересчитать»: пронумеровать все его элементы натуральными числами.

На первый взгляд, рациональных чисел на прямой «намного больше» чем целых. Они расположены всюду плотно: в любом сколь угодно малом интервале их бесконечно много. Но оказывается, что множество Q также счётно. Докажем сначала счётность Q+ (множества всех положительных рациональных чисел).

Выпишем все элементы Q+ в такую таблицу: в первой строке — все числа со знаменателем 1 (т. е. целые), во второй — со знаменателем 2 и т. д. (см. рисунок на с. 11). Каждое положительное рациональное число обязательно встретится в этой таблице, и не однажды (например, число 1 = 1/1 = 2/2 = 3/3 = … встречается в каждой строке этой таблицы ).

- 10 -

А теперь мы пересчитаем эти числа: идя по стрелочкам, присваиваем каждому числу номер (или пропускаем это число, если оно уже встречалось нам раньше в другой записи).

Поскольку мы двигаемся по диагоналям, то мы обойдём всю таблицу (т. е. рано или поздно доберёмся до любого из чисел).

Итак, мы указали способ пронумеровать все числа из Q+, т. е. доказали, что Q+ счётно.

Заметим, что этот способ нумерации не сохраняет порядка: из двух рациональных чисел большее может встретиться раньше, а может — и позже.

Как же быть с отрицательными рациональными числами и нулём? Так же как с космозоологами и филателистами в бесконечной гостинице. Пронумеруем Q+ не всеми натуральными числами, а только чётными (давая им номера не 1, 2, 3, ..., а 2, 4, 6, ...), нулю присвоим номер 1, а всем отрицательным рациональным числам присвоим (по такой же схеме, что и положительным) нечётные номера, начиная с 3.

Теперь все рациональные числа занумерованы натуральными, следовательно, Q счётно.

Возникает естественный вопрос:

Может быть, все бесконечные множества счётны?

- 11 -

Оказалось, что R — множество всех точек на числовой прямой — несчётно. Этот результат, полученный Кантором в прошлом веке, произвёл очень сильное впечатление на математиков.

Докажем этот факт так же, как это сделал Кантор: с помощью диагонального процесса.

Как мы знаем, каждое действительное число х можно записать в виде десятичной дроби:

х = А, α1 α2 ... αn ...,

где А — целое число, не обязательно положительное, a α1, α2, ... αn, ... — цифры (от 0 до 9). Это представление неоднозначно: например,

1/2 = 0,50000... = 0,49999...

(в одном варианте записи, начиная со второй цифры после запятой, идут одни нули, а в другом — одни девятки). Чтобы запись была однозначной, мы в таких случаях всегда будем выбирать первый вариант. Тогда каждому числу соответствует ровно одна его десятичная запись.

Предположим теперь, что нам удалось пересчитать все действительные числа. Тогда их можно расположить по порядку:

х1 = А, α1 α2 α3 α4 ...

х2 = B, β1 β2 β3 β4 ...

х3 = С, γ1 γ2 γ3 γ4 ...

х4 = D, δ1 δ2 δ3 δ4 ...

………

Чтобы прийти к противоречию, построим такое число у, которое не сосчитано, т. е. не содержится в этой таблице.

Для любой цифры а определим цифру ̅а следующим образом:

- 12 -

Положим  (у этого числа к-я цифра после запятой равна 1 или 2, в зависимости от того, какая цифра стоит на к-м месте после запятой в десятичной записи  числа xk).

Например, если

х1 = 2,1345 ...

х2 = -3,4215 ...

х3 = 10,5146 …

х4 = -13,6781 …

………

То

Итак, с помощью диагонального процесса мы получили действительное число у, которое не совпадает ни с одним из чисел таблицы, ведь у отличается от каждого xk по крайней мере к-й цифрой десятичного разложения, а разным записям, как мы знаем, соответствуют различные числа.

Предположив, что можно пересчитать все действительные числа, мы пришли к противоречию, указав число, которое не сосчитано. Следовательно, множество R. несчётно.

Множества R. и N не являются эквивалентными, и NR, поэтому всех действительных чисел в некотором смысле «больше» чем натуральных. Говорят, что мощность множества R. (мощность континуума) больше чем мощность N.

Континуум-гипотеза


Теперь мы располагаем всеми необходимыми сведениями для того, чтобы сформулировать знаменитую первую проблему Гильберта:

Континуум-гипотеза. С точностью до эквивалентности, существуют только два типа бесконечных числовых множеств: счётное множество и континуум.

Иначе говоря, нужно установить, существует ли множество промежуточной мощности, т. е. такое множество Τ, N ⊂ Τ ⊂ R, которое не эквивалентно ни N, ни R.

- 13 -

Этой проблемой занимались очень многие математики. Сам Георг Кантор неоднократно заявлял, что доказал эту гипотезу, но всякий раз находил у себя ошибку.

О ДОКАЗАТЕЛЬСТВАХ В МАТЕМАТИКЕ


Математика — точная наука, требующая строгости рассуждений. Но что означает строго доказать какое-либо утверждение? Это означает вывести его из аксиом — исходных положений, принимаемых без доказательства.

Конечно, в выборе аксиом, которые закладываются в основу теории, есть некоторый произвол. Но обычно аксиомы возникают естественным путём, из познания действительности. В теории множеств, частью которой являются конструкции, описанные в предыдущих разделах, тоже имеется общепризнанная система аксиом Цермело—Френкеля.

А
А
Настройки
Сохранить
Читать книгу онлайн Проблемы Гильберта (100 лет спустя) - автор Андрей Болибрух или скачать бесплатно и без регистрации в формате fb2. Книга написана в 1999 году, в жанре Детская образовательная литература, Математика. Читаемые, полные версии книг, без сокращений - на сайте Knigism.online.