This accessible volume delivers a complete design methodology for microelectromechanical systems (MEMS). Focusing on the scaling of an autonomous micro-system, it explains the real-world problems and theoretical concepts of several different aspects inherent to the miniaturization of sensors and actuators. It reports on the analysis of dimensional scaling, the modelling, design and experimental characterization of a wide range of specific devices and applications, including: temperature microsensors based on an integrated complementary metal-oxide-semiconductor (CMOS) thermocouple; mechanical sensors; inductive microsensors for the detection of magnetic particles; electrostatic, thermal and magnetic actuators. With an original approach, this informative text encompasses the entire range of themes currently at the forefront of MEMS, including an analysis of the importantissue of energy sources in MEMS. In addition, the book explores contemporary research into the design of complete MEMS with a case study on colonies of microbots. Scaling Issues and Design of MEMS aims to improve the reader’s basic knowledge on modelling issues of complex micro devices, and to encourage new thinking about scaling effects. It will provide support for practising engineers working within the defence industry and will also be of welcome interest to graduate students and researchers with a background in electronic engineering, physics, chemistry, biology and materials science.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться