Двенадцатая книжка серии «Школьные математические кружки» посвящена одному из фундаментальных понятий математики – непрерывности и предназначена для занятий со школьниками 7–11 классов. В неё вошли разработки девяти занятий математического кружка с подробно разобранными примерами различной сложности, задачами для самостоятельного решения и методическими указаниями для учителя. В приложении содержится список дополнительных задач и их решения. Отдельная часть этого раздела посвящена строгим...
Книжка состоит примерно из двухсот задач, многие из них даны с решениями или комментариями. Эти задачи очень разнообразны – от традиционных задач, в которых нужно найти и как-то использовать то или иное множество точек, до небольших исследований, подводящих к важным математическим понятиям и теориям. Помимо обычных геометрических теорем о прямых, окружностях и треугольниках, в книге используются метод координат, векторы и геометрические преобразования, и особенно часто – язык движений. Некоторые...
В книге изложены численные методы решения задач оптимизации. Приводятся теоретическое обоснование и краткие характеристики этих методов. Рассматриваются задачи минимизации функций в конечномерных и бесконечномерных пространствах, а также задачи оптимального управления процессами, описываемыми системами обыкновенных дифференциальных уравнений и уравнений в частных производных. Для студентов вузов по специальности «Прикладная математика» и специалистов в области задач оптимизации.
Книга «Метод координат» является пособием для обучения школьников, проявляющих интерес к математике. Изложение идет от простейших, знакомых даже младшим школьникам вещей (координаты точки на прямой) и доходит до понятия о четырехмерном пространстве и его свойствах. Книга содержит большое количество задач разного уровня сложности. Она рассчитана прежде всего на учеников ОЛ ВЗМШ и других заочных математических школ, но будет полезна учителям средних и старших классов при проведении...
В книге в научно-популярной форме рассказывается о нашей Вселенной – о строении атомов и атомных ядер, о различных элементарных частицах, о телепортации квантовых состояний, о том, что пустое пространство вовсе не пустое, а содержит множество частиц, которые рождаются и исчезают, о строении звезд и источниках их энергии, о возникновении и развитии Вселенной и о многом другом. При этом излагаются только те результаты, которые утвердились в современной науке и подтверждены опытом. Эта книга – для...
Турнир городов – крупнейшее математическое соревнование школьников, проводящееся вот уже 30 лет. Его уникальность в том, что он доступен школьникам всего мира. Трудность задач самая разнообразная – от совсем легких до исключительно трудных, которые иной раз удавалось решить только 1-2 участникам. В настоящей книге представлены все задачи 30 турниров с краткими указаниями. Автор – один из «отцов-основателей» Турнира и его бессменный организатор на протяжении всех этих лет.
Юбилейные материалы о научных достижениях знаменитого математика, академика, лауреата Ленинской премии, международной премии им. Лобачевского, премии Вольфа.