Ра =aааЕа, Рb =abbEb, Рс =aссЕс. (31.9)

Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.

Тензор часто записывается в виде таблицы из девяти коэф­фициентов, взятых в скобки:

Для главных же осей а, b и с в таблице остаются только диаго­нальные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.

Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).

Если все три элемента тензора поляризуемости в диагональ­ной форме равны друг другу, т. е. если

то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изот­ропным. В тензорных обозначениях

где.dij—единичный тензор:

что, разумеется, означает

Тензор dijчасто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает

т. е. получается наш старый результат для изотропного диэлек­трика:

Р=aЕ.

Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элемен­тарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симмет­ричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° от­носительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен перехо­дить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.

Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллип­соид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для ку­бического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.

Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симмет­рии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемо­сти увидеть, какова должна быть эта связь, относительно легко.

§ 4. Другие тензоры; тензор инерции

В физике есть еще немало других примеров тензоров. В ме­талле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорцио­нальна электрическому полю Е, причем константа пропорцио­нальности называется проводимостью s

j=sЕ.

Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем

Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фикси­рованной оси, пропорционален угловой скорости w, и коэффи­циент пропорциональности I мы назвали моментом инерции:

L = Iw.

Момент инерции тела произвольной формы зависит от его ориен­тации относительно оси вращения. Моменты инерции прямо­угольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость со и момент количества движения L — оба векторы. Для враще­ния относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления to и L, вообще говоря, не сов­падают (фиг. 31.4).

Фиг. 31.4. Момент количества движения L твер­дого предмета, вообще говоря, не параллелен векто­ру угловой скорости w.

Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:

Девять коэффициентов Iij называют тензором инерции. По ана­логии с поляризацией кинетическая энергия для любого мо­мента количества движения должна быть некоторой квадратич­ной формой компонент wx, wy и wz:

Мы можем снова воспользоваться этим выражением для опре­деления эллипсоида инерции. Кроме того, снова можно восполь­зоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.

Тензор инерции твердого тела можно написать, если извест­на форма тела. Нам нужно только выписать полную кинетиче­скую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетиче­ская энергия равна просто сумме