Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways. Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and fluids for inkjet printing, and the processes involved. It goes on to describe specific applications, e.g. MEMS, printed circuits, active and passive electronics, biopolymers and living cells, and additive manufacturing. Detailed case studies are included on flat-panel OLED displays, RFID (radio-frequency identification) manufacturing and tissue engineering, while a comprehensive examination of the current technologies and future directions of inkjet technology completes the coverage. With contributions from both academic researchers and leading names in the industry, Inkjet Technology for Digital Fabrication is a comprehensive resource for technical development engineers, researchers and students in inkjet technology and system development, and will also appeal to researchers in chemistry, physics, engineering, materials science and electronics.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться