Реклама полностью отключится, после прочтения нескольких страниц!



Что случится с вашим отражением, если повернуть одно из таких загадочных зеркал на четверть оборота? Изображение мгновенно перевернется вверх ногами (рис. 3)! Значит, в определенном положении такое зеркало ничего не переставляет в изображении — ни правую сторону с левой, ни верхнюю с нижней. В другом же положении то же самое зеркало меняет местами верх и низ!

Рис. 3. «Магические» зеркала перевертывают изображение вверх ногами, если их повернуть на 90 градусов.

Предмет явно заслуживает дальнейшего изучения (так, наверное, говорит себе шимпанзе, размышляя о том, что видит в зеркале). Это изучение мы начнем со следующей главы, где разберемся подробно, что происходит в зеркале с одномерными и двумерными геометрическими фигурами. В процессе изучения придется познакомиться со многими удивительными научными истинами. Некоторые из них будут легковесными, а другие — не такими уж пустячными. Два открытия, принадлежащих к числу выдающихся научных свершений века, тесно связаны с проблемой правого и левого и природой зеркальных отображений. Это ниспровержение закона сохранения четности физиками и открытие биологами спирального строения молекулы, которая несет генетический код. Поэтому в последних главах книги русло нашего исследования приведет читателя к самым глубоким и мало изученным водам океана современной науки.

Глава 2. Лайнландия и Флатландия

Мы живем в мире трех измерений, или, как иногда говорят для краткости современные геометры, в 3-пространстве. Каждое твердое тело можно измерить вдоль трех осей: север — юг, восток — запад и верх — низ. (Один приятель рассказывал мне, что у них в колледже преподаватель математики, человек с причудами, объяснял существование этих трех осей следующим образом: сперва он бегом пересекал аудиторию поперек, затем вдоль — по центральному проходу, — а после этого несколько раз подпрыгивал на месте.) Изучением геометрических фигур в 3-пространстве занимается стереометрия. Если мы ограничимся рассмотрением двух измерений, то получим планиметрию, то есть геометрию фигур, начерченных на двумерной поверхности — в 2-пространстве. Можно сделать еще один шаг вниз по этой лестнице и рассмотреть фигуры 1-пространства — одномерные фигуры, которые помещаются на прямой линии. Полезно разобрать природу зеркальных отображений во всех трех перечисленных пространствах.

Начнем с самого простого и познакомимся с Лайнландией, которая состоит из точек, образующих одну-единственную прямую, простирающуюся до бесконечности в обоих направлениях. Забавы ради представим себе, что такая линия населена расой примитивных созданий (жителей Лайнландии), которых мы будем называть одномерцами. Одномерцы мужского пола представляют собой длинные отрезки с «глазом» на одном конце (глаз мы будем изображать просто точкой). Одномерцы женского пола — более короткие отрезки и тоже с глазом на конце. Глаза прорезаются лишь у взрослых одномерцев. Дети — просто маленькие палочки без глаз. Чтобы сделать жизнь одномерцев интереснее, мы должны были бы, конечно, поселить их в мире, состоящем из сложной сети линий, чтобы они могли двигаться взад и вперед по ней, переходя с одной линии на другую, как железнодорожные вагоны на разъездах, но это излишне осложнило бы нашу задачу, так что ограничимся пока единственной линией. Если перпендикулярно линии поместить зеркало, как показано на рис. 4, можно получить зеркальные образы одномерцев. На рисунке изображено целое зеркало, но что касается одномерцев, то их «зеркало» — всего лишь точка на линии. Заметим сперва, что одномерец-младенец является точной копией своего зеркального изображения. Это означает, что мы можем мысленно переместить маленького одномерца по линии в само зеркало, не поворачивая одномерца на плоскости, до тех пор, пока он не совпадет точка в точку со своим зеркальным близнецом. Если такую операцию можно сделать с некоторой фигурой, то мы говорим, что эта фигура симметрична.

Рис. 4. Одномерцы и их зеркальные изображения.

А симметричны ли взрослые одномерцы? Нет, потому что мы не можем совмещать их с зеркальными изображениями, перемещая по прямой, — дело в том, что концы у взрослых одномерцев разные. Пусть линия, на которой они живут, простирается с востока на запад. Если взрослый одномерец обращен лицом на восток, его зеркальный двойник будет смотреть на запад. Мы, конечно, можем перевернуть одномерца и точно совместить с изображением, но для этого придется «снять» его с линии и произвести поворот в пространстве более высокой размерности — в двумерном мире. Поскольку, не выходя в пространство высшей размерности, нельзя наложить взрослого одномерца на его зеркальный образ, мы говорим, что эта фигура асимметрична.

Есть и другой способ отличить в Лайнландии симметрию от асимметрии. Если фигура симметрична, то у нее всегда есть точка (только одна) в самом центре, которая делит фигуру на две идентичные половинки, причем одна из них есть отражение другой. Такая точка называется центром симметрии. Если мы поместим зеркало перпендикулярно линии в этой точке, оставшаяся часть фигуры вместе со своим отражением будет точно воспроизводить исходную фигуру независимо от того, в какую сторону обращено зеркало. Можно ли считать тогда, что одномерец с глазами с обоих концов симметричен? Да. Такую фигуру можно было бы наложить на зеркальное изображение, и у нее был бы центр симметрии, делящий фигуру на две зеркальные половинки.

Пусть в Лайнландии живут только три взрослых одномерца — А, Б и В, причем все они «смотрят» на восток. Если мы получим зеркально обращенную картину одного из них, скажем среднего, то все трое мгновенно заметят перемену. Теперь А и Б «глядят друг на друга», а Б и В «повернуты спинами» один к другому. Но если вся прямая окажется зеркально отраженной, то есть вся «вселенная» одномерцев, то сами они о происшедшей перемене не смогут узнать. В действительности для них просто не имеет смысла говорить о какой-либо перемене. Мы знаем, что направление линии изменилось на обратное, но знаем потому, что живем в 3-пространстве и можем наблюдать положение Лайнландии по отношению к внешнему миру. Но одномерцы не могут представить себе пространство размерности большей чем единица. Они знают только свой собственный мирок, ту единственную прямую, на которой живут. С их точки зрения, никакого изменения не произошло. Только в том случае, когда операции зеркального отражения подвергается какая-то часть их «вселенной», одномерцы смогут заметить перемену.

Во Флатландии, в 2-пространстве планиметрии, все обстоит интереснее, но в отношении зеркальной симметрии предметы ведут себя практически так же, как в Лайнландии. На рис. 5 наш художник дал стилизованное изображение асимметричного двумерца и его отражения в вертикальном зеркале. (Оно изображено объемно, в 3-пространстве, но зеркало двумерца — это всего лишь прямая линия, которую он видит перед собой.) Совместить двумерца с зеркальным изображением невозможно. Если бы мы могли его взять с плоскости, как бумажного солдатика, перевернуть и снова положить в перевернутом виде, то все это можно было бы произвести в 3-пространстве, а не в 2-пространстве Флатландии. Что же произойдет, если держать зеркало над двумерцем или под ним, как показано на рис. 6? В этом случае поменяются местами верх и низ, потому что зеркало перпендикулярно вертикальной оси. Но изображение в зеркале получится таким же, как и прежде; изменится только его положение на плоскости. Мы можем взять любое из зеркальных изображений на рис. 6 и, перевернув, совместить их точка в точку с зеркальным изображением на рис. 5. Где именно помещено зеркало — не имеет ни малейшего значения, так как отражение асимметричного двумерца всегда получается одинаковым.

Рис. 5. Двумерец и его отражение в вертикальном зеркале.

Нетрудно изобразить разные геометрические фигуры Флатландии, которые являются симметричными и не меняются при отражении в зеркале. Квадраты, окружности, эллипсы, равносторонние и равнобедренные треугольники, значки карточных мастей — бубновой, червонной, пиковой и трефовой — все они при отражении остаются неизменными. В Лайнландии, как мы уже знаем, у каждой симметричной фигуры есть точка, которая делит фигуру на зеркальные половинки. С симметричными фигурами Флатландии то же самое делает прямая линия, называемая осью симметрии. На рис. 7 приведены примеры различных симметричных фигур на плоскости. Оси симметрии указаны пунктирными линиями. Обратите внимание на то, что у фигуры может быть разное число осей симметрии — от одной до бесконечности. Круг — единственная плоская фигура, имеющая бесконечное число таких осей. Другие фигуры могут иметь хоть и не бесконечное, но произвольно большое число подобных осей. Если поместить зеркало так, чтобы его край совпадал с осью симметрии, то оставшаяся перед зеркалом часть фигуры вместе с отражением, как и в Лайнландии, точно повторит форму исходной фигуры.

А
А
Настройки
Сохранить
Читать книгу онлайн Этот правый, левый мир - автор Мартин Гарднер или скачать бесплатно и без регистрации в формате fb2. Книга написана в 1967 году, в жанре Математика. Читаемые, полные версии книг, без сокращений - на сайте Knigism.online.